P-soluble linear groups with Sylow p-intersections of small rank

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on $p$-soluble groups with a generalized $p$-central or powerful sylow $p$-subgroup

let $g$ be a finite $p$-soluble group‎, ‎and $p$ a sylow $p$-subgroup of $g$‎. ‎it is proved‎ ‎that if all elements of $p$ of order $p$ (or of order ${}leq 4$ for $p=2$) are‎ ‎contained in the $k$-th term of the upper central series of $p$‎, ‎then the $p$-length of‎ ‎$g$ is at most $2m+1$‎, ‎where $m$ is the greatest integer such that‎ ‎$p^m-p^{m-1}leq k$‎, ‎and the exponent of the image of $p$...

متن کامل

on p-soluble groups with a generalized p-central or powerful sylow p-subgroup

let $g$ be a finite $p$-soluble group‎, ‎and $p$ a sylow $p$-sub-group of $g$‎. ‎it is proved‎ ‎that if all elements of $p$ of order $p$ (or of order ${}leq 4$ for $p=2$) are‎ ‎contained in the $k$-th term of the upper central series of $p$‎, ‎then the $p$-length of‎ ‎$g$ is at most $2m+1$‎, ‎where $m$ is the greatest integer such that‎ $p^m-p^{m-1}leq k$‎, ‎and the exponent of the image of $p$...

متن کامل

Small P-Groups with Full-Rank Factorization

The problem of determining which abelian groups admit a full-rank normalized factorization is settled for the orders 64 = 26, 81 = 34, and 128 = 27. By a computer-aided approach, it is shown that such groups of these orders are exactly those of type (22, 22, 22), (22, 22, 2, 2), (23, 22, 22), (23, 22, 2, 2), (22, 22, 22, 2), and (22, 22, 2, 2, 2). Mathematics Subject Classification (2000): Prim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1979

ISSN: 0021-8693

DOI: 10.1016/0021-8693(79)90105-4