P-soluble linear groups with Sylow p-intersections of small rank
نویسندگان
چکیده
منابع مشابه
on $p$-soluble groups with a generalized $p$-central or powerful sylow $p$-subgroup
let $g$ be a finite $p$-soluble group, and $p$ a sylow $p$-subgroup of $g$. it is proved that if all elements of $p$ of order $p$ (or of order ${}leq 4$ for $p=2$) are contained in the $k$-th term of the upper central series of $p$, then the $p$-length of $g$ is at most $2m+1$, where $m$ is the greatest integer such that $p^m-p^{m-1}leq k$, and the exponent of the image of $p$...
متن کاملon p-soluble groups with a generalized p-central or powerful sylow p-subgroup
let $g$ be a finite $p$-soluble group, and $p$ a sylow $p$-sub-group of $g$. it is proved that if all elements of $p$ of order $p$ (or of order ${}leq 4$ for $p=2$) are contained in the $k$-th term of the upper central series of $p$, then the $p$-length of $g$ is at most $2m+1$, where $m$ is the greatest integer such that $p^m-p^{m-1}leq k$, and the exponent of the image of $p$...
متن کاملSmall P-Groups with Full-Rank Factorization
The problem of determining which abelian groups admit a full-rank normalized factorization is settled for the orders 64 = 26, 81 = 34, and 128 = 27. By a computer-aided approach, it is shown that such groups of these orders are exactly those of type (22, 22, 22), (22, 22, 2, 2), (23, 22, 22), (23, 22, 2, 2), (22, 22, 22, 2), and (22, 22, 2, 2, 2). Mathematics Subject Classification (2000): Prim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1979
ISSN: 0021-8693
DOI: 10.1016/0021-8693(79)90105-4